
NASA-CR-191600

0 _e

0_ C _'_

A t

C

cc_

Uc_ _

oc _',z-' >,

cg

OK. IF

.,¢ ,_ b.,

@, C3 >-

I

I _-

ZOO0

L

_D

A STRUCTURE COVERAGE TOOL FOR

ADA TM SOFTWARE SYSTEMS

Liqua Wu, V_¢tor R. Basili, .rid Karl Reed s

Department of Computer Science

University of Maryland

College Park, _ 20742

7/v -6i-

/3 6

Coverage metrics have traditionally been used to

evaluate the effectiveness of procedures for testing

software systems. In practice, however, the metrics are

heavily influenced by the characteristics of traditional

prof, ra_ming languages such as Fortran and Pascal.

Languages such as Ads differ from traditional languages
to such mz extent that it is necessary to develop new

metrics.

This paper proposes a number of coverage measures

for Ada features such as packages, senerle units, tad

tasks, and dLsc_ their interpretation In relation to

the tradh|onal coverage metrics. It also propose a

mechanism for collecting these coverage measures. In

addition, it suggcsts that coverage metr_es n_y also be

interpreted as indlcato_ of dynamic system

performance.

INTRODUCTION

The last few years have seen an increased emphasis

upon the development of techniques for assessing .tad

controlling the quality Of software ptDduct_. Research_5 134
in the U.S., , and practice in the Japanese

' w 17 _ 12 23computer mlmtLfacturem soft are factories . , ,

hive reco_izcd the importance of meaaurea of program

structure on one hand, tad techniques for quality

assurance on the other as fundamental aspects of

sO_wlJPe quality U_'tnce.

• The third author is on leave from the

Department of Computing g the Royal Melbourne

Institute of Technology, Me|bourne, A_atralia.
Ada is a trademark of the U.S. Department of

Defense - Ads Joint Program Office.
Support for this research provided by NASA Grant

NSG-6123 to the Unive_ity of Maryland.

The vast bulk of the work to date distinguishes

between measures of program and s'!_tem structure,

which can be obtained by automatic analysis of source

code, and dynamic measure_ of program quality which

develop confidence in program quality by testing the

system _ would be McCabe's cyciomatte number for the

former xs and test coverage for the latter_s' 14

There have been few reporta of effortsto integrate

both static and dyntmlc me_ to allow an overall

assemment of software quality.

The TAME b projee_ at the University of

Maryland's Department of Computer S¢tence intends to

integrate tools for ohtalnin$ both stoic and dynamic

messurea of prosram quality into a single environment.

This will allow the quality of a software produc_ to be

monitored _t all stages of its evolution and allow

judgements to be made upon the basL_ of various values

obtained. Although TAME is overwhelmingly language

independent, Its first application will be for monitoring

systems written in Aria.

Most of the u_eful code-based metrics measure the

static structure of the source because there is a serious

shortage of measures of dynamic structure, with Conte

et. al.m citing only a simple llvcncss measure.

" Considerable experience has been gained in using

_hese two classes of metrics to study s_tems

implemented in traditional programming languages such

as FORTRAN, COBOL, Pascal, and PL/I, and many of

the quantities measured reflect their characteristica.

The availability of lansuages such as Ada and

PROLOG..rid their use in applications systems,

nece_ltatcs the development of new measures, since

these languages differ significantly from rhone currently

under study. Structural coverage metrics will need to

be tailored to allow for the impact of these new feature_

upon progrmnming practice.

b Seen and r for a complete description.

294 Jo(nt A_I Co_fQmace 1987

4-30 pR4Z_CED!NGP_IGE B_ANK KOT FILMED

3

3

3

!

3

The results of a joint study between the University

of Maryland and Genera[Electric I show that a number

of Ada features such as packages, generic unit*,

exceptions, and tasks, appear to be misused, and to be a

source of program fault_. Applying exL*ting measures to

Ads progran_ without explicitly recognizing it, unique _

character_tic* may lead to a totally misleading picture

of t _tems structure tad quality.

Tnufitional meMures of test coverage include _

a) the percentage of source code irmtructions executed,

b) the percentage of partial paths traversed e,

c) percentage of predicate outcome* exereL_,d,

d) the percentage of procedure or function calls made,

e) the percentage of procedure, executed,

The first three of these measures are eeentiaJly

statement level mesaures and reveal little about the

system structure. On the other hand, the last two

measure the procedural level and provide an indication

of system structure.

Measures relating to procedure usage will need to

be reu._essed because of the impact of Ada's generic

units and facilities for partitioning systems. In addition,

new measures should be defined for taslcs and exception

handllng.

Measures of the dynamic behavior of a large system

cot_L_ting of a number of program-unit* cannot be

obtained easily by examining its source code. They

may, however, be deduced from an tnaly_ of the

system's behavior during execution* and interpretation

of senti*ties normally associated with testlng, such ns

various coverage measure_, and for altering the

strategies used for planning testa 18

The objective of test coverage measures is to allow

some estimate to be made of the extent to which a set

of te_ is likely to have revealed error_ in the test

subject te._,_ generation, and the interpretation of

coverage metric*, will depend upon whether a series of

unit tests, a subsystem test, or a complete system test

are being planned.

In what follows, we propoee t number of mutton'us

of static and dynamic structure for _ems

Implemented in Ada. We discuss their interpretation in
relation to tradltlonal test coverage meuuree u t first

step in the development of a more complete method of

dynamic _ructure meaaurement through testing. These

are, ia general, re-interpretations of existing me, urea.

Many of the measures are not tq_ecific to Ada and

can be applied to any language supporting multiple

entry point_,(e.g. Fortran, PL/I, A._embler), internally

and externally callable procedure* (e.g. Cobol, PL/I

A partial path is the shortest section of code
connecting two decision statements which does not

contain any other decision statement.

A_embler), genetic declarative straacturtm, or tasking
(e.g. Module).

ADA AND COVERAGE ,MEASURES

There are four important features of Ads which

impact the design of coverage measures which will be

discussed further in this paper. These are:

a) genetic unit*

b) packages

c) exceptions, and

d) tasking.
The firet two of these deal with the procedural level

of system structure, while the last two support non-

deterministic _tem behavior. A complete set of Ada

coverage mea, ures must include the statement level

metric, mentioned earlier. Table I shows the

relationship of the various measures.

Generic Unit

Genetic unit* may be instantlated into a new unit

by a declaration either overloading an existing unit

uame or creating a new one. Instantiatlo_ may apply a

genetic unit to different type*. It is not Immible,

therefore, to a_ume that a particular generic package

han been properly te_ed until all its instantiations have

been re,ted. Steps mtmt also be taken to ensure that all

references to individual in*tantiatlon_ are correctly

counted. At lent one currently available path analysis
tool fails to make these dL*tlnctions

Ada's provision for block statements, executable

units containing declarations it , r_es the possibility of

a particular itL_tantiation of a generic procedure not

actually being elaborated with the result that type

checking may not be complete d. We will need a

coverage measure for genetic unit elaboration for this

Paekat, es and Libraries

The potential use of Ada library unit, end

packages ns device* for arbitrarily partitioning t _em

pre,ents a problem s In this case, the public entitles

in the package or library constitute a potential _et of

entities that can be referenced from any part of the

project. It will therefore be necemary to decide which

entitles should be included in coverage counts and the

method to be t_ed in ettegotizing them.

d We note that block statement, also require special

treatment for similar reasons, however, we have limited

our discussion to those features which illustrate our

point.

Joint Ada Conference 19_7 295

4-31

A particularpackage may contain unitswhlch can
be referencedfrom within the package s.swell. This

provides another basis for estimating coverage'.

Tankln,z and Excev_lon Handllne

Ada's tasldng-and exception handling mechanisms
add a new dimension to path coverage since it may be

desirable to verify that p&th._ which traver_ more thin
one program unit are exercised and to verity that
various inter•talons actually occur. Each of these
aspects of Ada must be accounted for in any proposed
me,aures and explicitly considered in their

interpretation.

The i_ues disc_sed here apply to other languagcs
which support similar features.

COVERAGE METRICS FOR ADA

We focus on the impact of Ada's facilitiesfor

partionin$systems and on the impact of genericunits
because these arc the features w_ch nece_itate re-

evaluating the approach to covcr_e measures. Any
complete set of measures for Ada would, of course,
include specific er.mmples for packages and procedures of

both the generic and non-generic variety. In tb_t sense,
some of our deIInitions are them.selvesgeneric.

Procedure Interaction and oartionIne

We wish to distinguishbetween the stLticstructure
and dynamic behaviorof a system which may consistof

Ada lih_ry units, packages tad a program. We may
then obtain an indlcationof system complexitybased

upon thisdllfcrence.

Let us consider a system which references "n"
di_erent units. Let us also suppose that there are •
total of "m" references to the "n" units. The ratio n/m
would provide an indication of the static complexity of
such • system. Two systems may have identical (n,m)
pai_ however, they may have diBereat interactive
complexitysinceone may activatem_t of its referenc_
to the m units, while the other may not.

The total number of referencesexecuted by t set of

testswhich representa typicalinput would alsoprovide
an indication of nbsolut¢ dyatmiic complexity. The
ratio n/m corresponcis to a procedure call coverage
metric.

We will bMe our discumlon on procedures since

these are among the most significant program units
from • system structurepointof view.A system written

in Ada will appear _ • collection of p_kages and

* Other languagessharethisproperty.

subprogram units,each of which may have multiple
procedures.

We can distinguishseveral differenttypes of
procedure reference, depending on the locationof a
reference and its target

a) Intra package reference ... the reference in the

currentpackage is to a procedure in thatpackagic,

b) Extra package reference...the referencein the

current package is to • procedure in some other
package,

c) Inter package reference ... the reference is directed
to • procedure in this package frvm some pml_rmm
unlt outside the package,

d) Combined inwarc_ package references ... the sum of
a) find c), and

_') Combined outwards package references ... the sum
of a) and b).

These can be repeatedfortheprogram reference
giving

Q [ntra program reference... the referenceis to •

procedurein the program, and

g) Extra program reference...the referenceis to a
procedureoutsidethe progrstm.

Dynamic Interaction Me_ures

Itispossible to define • wide range of these metrics

which mic_t_ the amount of |nteractionbetween
specific packages; however, we restrict ourselves to the
following simple examples to |llustrate the print|pie #.

A) Thic number of exam referencedproceduresin t
package called compared to the number of

procedures in t pickle

B) The number of combined law•ads procedures
referenced procedur_ in n package called compared
to the number of combined inwards package
references, and

C) The numb_ of extra procedure rcfereniccsIn a
} package executed compared to the number of exam
_ procedure references.

Measure A cannot be interpreted without a
knowledge of the the number of combined inwards
referenced procedures for the package concerned and the
context of the test. It will convey no iafoemation in

addition to s static count of the referenced procedures
in • package if the psckage is In a system test.
However In the came of • unit te_, it will show that the
eomponente of the package are inadequately tested.

f We could consider interactionbetween • given

package and each of itspartners,and some subsetof its

partners,forexample. We could alsoco_sider allpossi-

ble combinations of these against the procedure refer-
ence categories presented above.

296 Jo4ntAda Conference 1987

4-32

_llll

Me,urn B will ,how the extent to which a

particular package's inwar_ calls are being utilized by a

particular test. It will, as the procedure coverage

aw/mptotes, provide an indication of the total dynamic
complexity of the package's inwards communieatiom.

It is also lntet;estlngto consider the implications of

this measure for a single test case since it provides an

indication of the dynamic complexity of the path traced

by the individual case. This may be usdul in judging

the difficulty In debugging faults found during the te_t.

A similar interpretation can be applied to to
measure C.

GENERICS AND COVERAGE _TEASURES

A generic unit is a template from which particular

instances of a general unit can be obtained. A

declaration provides a program unit name and an

optional genericactual..partS specifying the name and

the types to used by this particular version of of the

package. The elaboration of the declaration of an

instance of a generic unit creates a new version which is

dhtinct from other versions generated from the same

generic unit. This is true even if instances have been

[nstantlated with the same generic_actual_part.

kin•anti•ted units are indistinguishable from

ordinary unit& All relevant coverage measures should

therefore be collected for both types of unit& For

example, procedure call coverz4ge measures should

clearly be collected in both c_.

In addition, elaborating an instantiation effectively

completes the process of type declarazion and can

prc>duce errors. Coverage measures are necemary for

this case also. Any knowledge of the instantiatlon can

be obtained only by an examination of the instantiating

statement and the generic unit, and any data about its

behavior can only be collected by monitoring the

original generic package or the point of lint•halation.

The mechanism used to obtain coverage meesures

for procedures cannot readily be ust_i for generic units.

We shall discu_ an appropriate method in the section

on implementation h.

t Seelt page 12.8.

b The Ada instantiatlon and generic package

mechanism automates the proce_ of type translation

which might otherwise be achieved explicitly by a pro-

cedure which existed solely for that purpose. Monitoring

procedure ,.sage would, of cousin, be simpler in such a

case, but the semantics of the linkage between t pro-

endure pair might not be apparent. Ada makes the llnk

explicit but complicates the measurement proce_.

4-33

(_gveratte ,'M_Muree For Generic"

We will discuss am number of measures for generic

units, focusing on imtantiation since it is this. feature

that makes the generic unit special.

I. The first dynamic measure for generic unit should be:

• Elaboration Coverage for • Generic Unit

"* the number of instantiations elaborated for a

generic unit divided by the total number of actual

instantiatiom for this generic unit.

It is necessary because type checking can not be said to

be complete until a declaration is elaborated, es we have

already said.

This meesure is essentially a procedure coverage

metric, but it may also be used to provide an indication

of the extent and nature of actual reuse of t particular

generic unit, u distinct from that which was intended.

An equivalent static measure would be the number

of ins•anti•ring statements for a given generic unit.

• Total Elaboration Coverage for Generic Units

If the average number of instantlations actually

elaborated for all generic packages is large, it could

mean that this system is making effective me of its

subcomponents.

* Genorie Unit Instance Coverage

From a test confidence point of view, exercising

each instance of a generic unit h neces_7 since errors

occurring in one instance may not appear in another. A

test set which exercises • large proportion of generic

instances without producing errors will raise nser

confidence significantly. We recommend two mensures

in this case, one for individual generice, and one for a

complete system.

Individual ins•anti••ions may have different

combinations of data types and operators as parameters

as represented by their in¢fividual generic_actual_pact.

This is t major reason for in.slating that each instance of

a generic unit be exercised. Ada's overloading of

opera_orJ can lead to t situation where • previously

tested program unit may be used with new data types

which are not valid for its semantics. However, the

instantiatlon will not be invalidated if there exist

operators for data types supplied. This is a sufficiently

subtle problem to warrant special attention.

[t Is therefore important to collect coverage

measures for data type usage which provide a

perspective of how data types are exercised dynamically.

We need to know the the structure of each unique

generic_actual_part associated with each generie

procedure, since this specifies a semantically unique
imtantlation.

Joint Ada Conference 1987 297

• UniqueInstantiation
"" an in_tantlation of a particular executable generic

unit _ said to be unique ifthe gencrld actual_part

specified dithers in. terms of actual type ttsage from

that use</In any Qther i_taatiation of that generic

unit.

Based on thb, we get the following coverage
me_ture:

• Unique Instanthttion Execution Coverage

• * the number of unique instantiatlons being executed

for a executable generic package divided by total

number of unique instantiations declared for that

generic package.

A hlgh value of this mensure means that the unique

irLqtantiation_ for the generic have been extensively

tested. The tester may have increased confidence in the

unit if no errors were detected.

It may also be useful to exercise a generic package

with generic_actual_parts applying it to a variety of

data types. This would require some prior knowledge of

the problem domain for which the unlt was intended. A

testing philosophy of thi_ type could lead to the

certification of a generic package for a set of data type

combinations.

The method of collecting thai information will be

discussed in the section on Implementation.

Parameter Utilization

A generic procedure may have been created by

extending the application of some existing procedure to

a new type set. It will be necessary, therefore, to

monitor the internal statement coverage, during

subsequent turning, to ensure that the behavior of all

operaton are verified. One pacticular pomtbillty Is that

the type of only one of a generic procedure's partmeter_

may be altered. In th_ case. t tester will be interested

in ensuring that all statements a_ected by that

parameter are ¢_erei._ed.

We can use the method described by Rapp and

Weyuker lg to obtain the set of "all-use-paths" for a

particular pantmete_. Designing tests which ensure

that the set of "all*use-pathE' for a particular

parameter were covered would ensure that all

statements in which the parameter appears are

exercised. This will ensure that any new uses of type

conversions and openLto_ are actually tested.

The following metric would indicate efcctiven¢_ of

a parameter use coverage test.

• Parameter Usage Coverage

• * the number of statements in which a parameter

appea_ which are executed divided by the total

number of those statements.

Tests aimed at collecting this metric would ensure

that the impact of parameter type ch-nges was

evaluated.

A similar static mea qurc could be propo_d which

would show the the extent to which a package was

likely to be influenced by a particular parameter.

• Parameter Usage Factor

*" the number of statements in which a parameter

appears compared to the total number of

statements.

TASK AND EXCEPTION COVERAGE

A complete system written in Ada may contain

independent task_. A full test of such a .',/stem may be

the only satL_factory mechanism of evaluating ta._k

interaction, since task unit te_t_ would validate the

function of the auk and not its user. A similar

argument can he applied to exceptionq; a unit

containing exceptions can not be consldered tested until

it h_ ra_d dl its exceptions. Coventge measures are

therefore required for task_ and exceptio_. In the case

of the former, we would wish to know...

a} whether every task wes activated,

h} whether every entry to a given task is used.

Coverage metrics can be defined readily for the_e

Ca.q_L

An identical set of measures would be needed for

exccptio_.

Tuk Execution Seouence

While not t coverage metric, we advocate recording

the auk execution sequence. Thai will simplify the

detection of erro_ due to poor synchronization

strategies and allow the construction of tests designed to

force particular task ordering.

IMPLEMENTATION

)
The statistics necessary for computing the coverage

meam_res that we have proposed can be collected by the

of automatic_Jly inserted probes* written in Aria is

under construction as part of the TAME project 7

environment.

h See also We_er et. al._ and Welser _4

See Brown and Hofman ¢ and Stucki _1. _ for ex,-

staples from other languages.

296 Joint Ada Confemnc_ 19_7

4-34

i,s

m

i

J
i

m

m

I

J

Structure test coverage execution requires two

components: an instrumented program and an execution
monitor. Probes are inserted into the source code to

obtain the instrumented program. The execution

monitor]nitiaiize_ the prooes, records when they are

executed, and reports on its re_u[ts.

We use a generic probe package to implement the
execution monitor. Elizabeth Katz first used this

approach in a prototype coverage system, but that

approach has been extended. As Fig. 1 shows, this

package has two generic parameter_ and declares two

procedures. Size (a parameter given to the generic

vackage initiate_record) indicates how many probes

have been added to the code. The increment procedure

is called with a probe number in this range whenever

the associated probe in the instrumented program is

executed. A separate pro'be number is allocated for each

unique object under observation. The report procedure

reports on the results whenever it is called.

We will now consider how the nature of these

probes varies with the various items being monitored

and discuss their insertion in the program to be

instrumented.

Instrumentin_ The ProL, ram

An instrument consists of two components: the

probe and its monitor. The probe is inserted in the

code, and the probe monitor collects the data.

Probe Monitor

Probe monitom will be implemented as generic

package. They consist of variables which record values
for some coverage measures whenever the procedure

increment is called and compute the necessary statistic

when the procedure repor_ is called at the end of each

unit's execution.

Insertln_ a probe into a generic unit would cause

multiple instances of that unit to call a single probe

monitor. Some difficu[ty would then be experienced in

deciding which instance of the package had actually

called the monitor.

genetic

instance_no : naturai;

c_Cable : record type;

package probe_monitor is

procedure increment(probe_number: I..dze);

procedure report;

end probe monitor;

Fig. 1. Structure of probe monitor

Using generic packages for probe monltors solves

that problem since a new version of the monitor can be

created with every instanfiation of the the unit being
monitored.

This is implemented by inserting an instantiation

statement for the probe monitor inside the specification

part of every generic package. Whenever a generic

package is instantiated, a new instance of the probe

monitor is generated. The variables in one instance will

give coverage measures for one instance of a generic

package. Therefore, we can easily distinguish the

coverage measures of a generic package for different
instances. The structure of the instrumented

specification part for a generic package is shown |n FIg.

2.L The instantlation for such t generic package is

given in Fig. 2.b.

There are two parameters passed to the probe

monitor. The first is an Instance number identifying the

particular lnstantiation of the generic unit, and the

second is a table represented by Fig. 3. The instance

number is not used for non-generic units.

• _ The table has two components. The first one gives

t_ae unit name (e.g. name of generic package), and the

second one Is an array which holds details of each probe

active for that generic unit|. The details include the

probe's usage, location, count, vaiue, etc. Therefore,

every instance of the probe monitor must be aware o/'

the meaning of each of its probes and the total number

in use.

The tables themselves are instances of the generic

table shown in FIg. 4. Property_list is • r_rd whose

structure is determined by the number sad nature of

the properties of etch probe as described in the bottom

J The non-generle units a treated as a single unit.

Jo4nt A(:laConference 1987 299

4-35

generic

c_no: natural;

package X_(ls

o..

_c_monitor is new pr_be..monitor

(i_. =mce.._o== > c.._o; ¢_tabie== > _c..table);

,.o

end X_

a. The structure ot instrumented specification

part for a generic pack_e

yy is new xx(...; cno -.> xx no);

b. The instantiation statement for

"the &eneric packz&e

FI&. 2

Unit name [Uni_

r -

Probe name [Pro_ [l"" [P°ben JI
Infoauation for each probe

Fill. 3

row of Fi i. 3. The generic table h-- the form shown in

FIe. 4.

All in._antlat!on statemenm /or thls &eneric table

will be inserted at the beglnnins of the main program,

since the number of probes needed for each progrmn

unit can be determined during compile time. One

instance of the probe monitor can therefore collect the

covet'aCe met._ures for all uoa-lleneric program units or

one instance of a generic unit.

Task Monitor

The task monitor is implemented by a tL_k with

one entry which recelves the signals from tasks and

records the sequence of task execution. Each task may

have several entries which may be invoked by other

pro&ram units (includin& tasks) and may also have
statement= which invoke entries in other tasks. Since

the tasks can be executed concurrently, the lnvo_ng

sequence may be very complic_ed. The task monitor

records the invokinll sequence for each system. The

structure of the task monitor isgiven in FI&. 5.

The specification part of the _ask monitor will be
inserted before the main prollram; therefore, the

monitor can run concurrently with the main prollraln.

The entry has one parameter for receivinll siKnais.

Whenever an entry in a tank is invoked, the ta_k

monitor LI invoked by a statement inserted _ the

bellinnlnll of the orillin_ task entry. This statement

passes the name of thla entry to the monitor.

generic
unit_name : strinll;

size : natural;-

ptckage initlate.record is

type table.._ype k record

infor_ltion : property [_t;

serial.no: natural;

end record;

type table is .rrsy [l.aize] of table type;

type record type Is record

name : string :== unit.name;

mu=e_no table : table;

end record;

end initlate record;

Fill. 4 Generic Table

task ttsk_Jnonltor is

entry sillnal(name_o f_t he_c alH ng_p rocedure)

nd taskmonitor;

task body task monitor]s

kith

=¢cept=ill_al(name) do

end signal;

-- put the name in a list

.N

end task_moni tot;

Fill. $ Structure of Task Monitor

300 Joint/i,_:la Conference 1987

4-36

,J
t.. a

L.

,J

:3

J

PI
i

cm

Probes

The probes for recording non-task activity conqist
of a call to the increment procedure in the appropriate
probe monitor sad code to ensure that the call is made

only once. As already "diaeuased, the probes are inserted
before or after the com]>unents to be measured and may
contain code which determines whether the event being
monitored actually occurred.

A structure coverage tool which collects a full range

of Adz related mensures is currently being constructed
as part of the TAME project. The tool will implement

the instrumenting concepts described in this paper and
will be used to explore the impact of' Adz on teeing
strategies.

We have discussed the impact that a language such
as Ada has upon the traditional measures used for
evaluating test effectiveness. In particular, we have
drawn attentlon to the impact of Ada's system
partitioning facilltles, and its generic capabilities, and

suggested new measures which recognize them explicitly.

We have proposed that some individual language
features be counted explicitly during testing. The
particular features differ significantly from those
traditionally measured. Previously, ensuring that all
statement_ and components were executed would be s
reasonable goal. Applying there same criteria to Ads
programs without explicitly considering these new
features might lead to unjustified confidence in the
results of some testing proce_es. A failure to
distinguish between particular instaatlatlons of generic
units is a case in point.

We have also suggested that coverage measures
may also be useful in determining a sy3tem's dynamic
eharacteristlca and as an indicator of its complexity.

Our future work will include a further investigation
of these concepts.

ACKNOWLEDGEMENTS

The authors wish to acknowledge discussions with
a number of TAME project membem and/'acuity in the
Department of Computer Science at the Univeraity of
Maryland. John Cannon and Mark Weiser acted as
sounding boarda sad sources of information, and

Elizabeth Katz tad Dieter Rombach, assisted in
clarifying a number of aspects of Ada's semantics.

We are particularly indebted to Ms. Katz who read

several early drafts and assisted in constructing some
test cases. Her assistance was invaluable and enabled
the paper to be completed on schedule.

4-37

We thank them for their help, however, we must

accept the responsibility for the opinions expressed
herein, which are our own unless otherwise stated.

1. V. !t. Basili, E. E. Katz, N. M. Panililo-Yap, C.
Loggia Ramsey sad, "Examining the Modularity of
Adz Programs," IEEE Computer VoL 18 No.
9 pp. 53-6,5 (Sep. 1985).

2. V.R. Basill and E.E. Katz, "METRICS OF
INTEREST IN ADA DEVELOPMENT," IEE-CS

WORKSHOP ON SOFTWARE ENGINEERING

TECHNOLOGY TRANSFER, pp. 22-29 IEE
COMPUTER SOCIETY PRESS, (1083).

3. V.R. Basill and J. Ram_y, "Structural Coverage
of Functional Testing," Computer Science
Technical Report Series TR-1442"

Department of Computer Science. University
of Maryland, (Sept. 1984).

4. V.R. Basili and D-M. Weiss, "A Methodology for
Collecting Valid Software Englnering Data," /EEE

Tron*. on Software En4. 3/oi. SE-IO No. 6 pp.
728-738(Nov. 1984).

5. V/L Basili, "Quantatatlve Evaluation of Software

Methodology," Prec. First Pan Pacific C_np_tcr

Conference, Australian Computer Society, (Sep.
198,5).

6. V. Ft. Basill and H. D. Rombach, "Tailoring the
Software Proeem to Project Co-h and

Environments," TR-I728, Department of Computer

Science, University of Maryland, (Nov. 1¢86). To
appear in the Prec. of the Ninth International

Conference on Software Engineering,
Monterey,USA March-April 1987

7. V. R. Bas[ll and H. D. Rombach, "TAME:
TAILORING AN ADA MEASUREMENT
ENVIRONMENT," Prec. e/ the Joint Ada

C,,onference, (March 16.10 1087).

8. _/. R. Basili and E. E. Katz, "Examining the

Modularity of Ada Programs," Prec. e/the Joint
Ada Cen/crence, (March 16-19, 1987).

9. J. IL Brown sad R. H. Hoffmsa, "Evaluating the
Effectivene_ of Software Verification- Practical
Experience With an Automated Tool," FJCC

AFIPS Conf. Prec. Voi. 41, Part I pp. 181-100
(1072).

10. S J). Conte H.E. Dunsmore and V.Y. Shen,
SOFTWARE ENGINERING METRICS AND

MODELS, The Benjamln/Cummings Publishing
Company, Inc, Menlo Park, Cal. 94025 (1986).

Joint AOaConference 1987 301

11. US DoD, "REFERENCE MANUAL FOR THE Ads

PROGI_.MMING LANGUAGE," ANSI/MIL.

STD-1815-1989, United States Department Of

Defence, (Feb 17 1083).

12. K. Fuj|no, "Software Development for ComputerJ
and Communications at NEC," IEEE Computer
VoLl7 No. 11 pp. 57-67 (Nov. Ig84).

13. W. Harrison IC Mage[11. Kluezny and A. DeKock,
"Ay|n K So(tw_ Complexity metrics to Program
Malntenance," /EEE Computer Vo|. 15 No. g pp.
85-79 IEEE Computer Society, (Sep. lg82).

14. W. E. Howden, "A Survey of Dynamic Analysis

Methods," IEEE Tutorial : Software T_ting amd
Validation Techniques, pp. 209-231 IEEE

Computer Society Press

15. T. McCabe, "A Complexity Me_ure," IEEE
Tr,_. Software Eng. Vol. SE-2 pp. 308-320 (Dee.
t0¢_).

18. E. Mi|ler, "Introduction to Softw_u-e Testlng

Technology," In Tutoria£" Software Testing

V4h'dation [E. Mi_er and W. E. Howden, ¢ds.) 2nd
Edition pp. 4-16 IEEE Computer Society, ([gSl).

17. Y. _fizuno, "Software Quality Improvement,"
IEEE Computer VoL 16 No. 3 pp. 66-72 (Mar.
zgs3).

18. J. Ramsey and V. R. Buill, "ANALYZING THE
TEST PROCESS USING STRUCTURAL

COVERAGE," Proe. 8_ International Conference

on So/tware gnfineering, pp. 30_311 (August 28-
3o, toss).

1O. S. Rapp. and E. $. Wey_ker, Compster

$cieru:eDepartment Technical Report Report No.
23 Department of Computer Science Courant
Institute of Mathematical Sciences New York

Un;vemity, (Dec. IgSl).

20. Jean E. Sammet, "%Vhy Ado Is Not J_._t Another

Programming Language," Communication o[the

ACM vol. 29 , no. 8 p. 722 (Aug. 1986).

21. L. G. Stuckl, "A Prototype Automatic Testing
Tool." FJCC AFIPS Con/. Proe. VoI. 41, Part

II pp. 829-836 (1072}.

22. L. G. Stucki, "NEW DIRECTIONS IN
AUTOMATED TOOLS FOR IMPROVING

SOFTWARE QUALITY," Current Trends in

Programming Methodol¢_l, Vol.ll R. 7". Yeh fed.),

pp. 80-111 Prentice-Hall, Inc., (1077). 2nd ed.
IEEE Computer Society Press'" also in
"TUTORIAL: Software Testing & Validation" 2nd

ed. IEEE Computer Society Press

23. D. Tajlma sad T. Matsubara, "The Computer
Software Industry In Japan," IEEE Computer VoI.
14 No. $ pp. 89-06 (May lg81).

24. M. WeL_r, "Program Slicing," [EEE Trans. of
Software Enfineering VoI. SE-10, No. 4 pp. 352-

357 (Jul. 1084).

2,5. M. D. Weiser J. D. Gannon P.R. McMullln,

"CompLrtson of Struc_ur_ Test Cove_e Metrics,"
[EEE So/tu_r¢ Vol. 2 , No. 2 pp. 80-85 (Mar.

xoss).
26. M. Zelkowltz, R, Yeh, It. Hamlet, 2. Gannon and

V. It. B_ili, "Software Engineering Practices in the
U.S. and Japan," IEEE Computer VoL 17 No.

6 pp. 57_8 {Jan. 1085).

[

L

.

L_

L.

302 Joint Ada Conference 1987

4-38

7

]

r

]

]

I

ORiG!NAL P',},Q£iS

OF POOR QUALITY

Biographies
.

Liqun Wu is ffi graduate research assistant in
Computer Science Dept., University of Maryland. Her
research interest is in Software Engineering. She
received her B.S. degree from the Computer Science
Dept., X]an J_aotong University, China in 1Q82.

Dept. Computer Science

University of Maryland
College Park,MD 20742
(3Ol) 454-8154

Victor R. Basill's biography and picture are
included with the paper "TAME: Tailoring an Ada
Measurement Environment" by V. R. Basili and I-L D.
Rombach in these proceedings.

Mr, Reed's address:

Karl Reed is a Visltlng Faculty Re_earcb

Associate in the Department of Computer Science at the
University of Maryland , College park. He is currently
on leave from the Department of Computing at the
Royal Melbourne Institute of Technology where he is
Senior Lecturer and Area Leader for Software
Enginefing. He received an Assoc. Diploma in

Communications Engineering from the Royal Melbourne
Institute of Technology in 1965, and an MS¢ in
Computer Science from Monash University in 1084.

Reed bu 22 years experience ia the computer industry,

having worked at Elliott Bros., ICIANZ, Month
University and L.M. Eriesson.

Reed was a research engineer with L. M Ericsson
Aunt. from 1973 to 1976, and h_s research interests in

computer architecture,software engineering,linking

Ioz_lers,char_ing algorithmsand technologypolicy.He

is currently National Chairman of the Australian
Computer Society Software Industry Committee, and
was mffidea Fellow of the ACS for his contributionto

the developmentof theAustralianSoftwareIndustry.

Mr. Reed has served as Stream Chairman for

Software Engineering at the First Fan Pacific Computer
Conference in Melbourne during 1985, and is a member

of the program Committee for TI_.F__Compsa¢ 1987. He
ts a member of the IF_.EE Computer Society, the
A.mociafion for Computing Machinery and the
Institution of Engineers Australia.

Dept. Computing
Royal Melbourne Institute of Techaoloo'
Melbourne,V_c. 3000
Australia

(03) 662_I l

)

Joint Ada Conference 1987 303

4-39

